Artificial intelligence (AI) and machine learning are now used in a wide range of applications, from image classification to autonomous driving, for example. However, one field of AI research that has yet to be fully explored is how we can apply AI to healthcare and drug discovery. Drug development is the first step in the process of identifying a new drug and its therapeutic target.
In the pharmaceutical industry, artificial intelligence (AI) is widely used for drug development. Artificial intelligence technology has the potential to identify drug targets and can help with drug design, discovery, detection, and screening of molecules in real-time.
Potency, bioavailability, effectiveness, and toxicity are used to predict drug development or new drug targets. Integration of AI tools in drug discovery and development applications could improve healthcare outcomes by increasing drug discovery efficiency, facilitating targeted molecule identification, reducing drug discovery timeframes, and, most importantly, lowering drug development costs for drug manufacturers.
The AI in the drug discovery market is expected to expand as a result of an increase in cross-industry alliances and collaborations, a substantial increase in venture capital investments, a rise in the value of drug discovery, and an increase in funding for R&D activities for the use of AI technology in the field of drug discovery.
Artificial intelligence integration for healthcare applications is still in its infancy, and the market is in its infancy. Since AI has such enormous potential in the healthcare sector, a large number of companies are investing in the creation of AI-based healthcare solutions.
AI is used by scientists to speed up the screening process and reduce the amount of time it takes to analyze and classify drug molecule interactions and histology data. Furthermore, the growing use of AI in the drug delivery space to carry out standard processes such as data mining and customization capabilities of AI platforms is creating new opportunities for AI in drug discovery market development. In comparison to animal models, AI algorithm-based models provide an accurate study of human physiological responses. Additionally, AI-based models aid in the reduction of experimental costs and the accurate prediction of cross-species differences.
Countries such as the US and Canada have been at the forefront of the healthcare industry over the years. An increasing number of major AI platform developers operating in the region is one of the major factors for the rapid growth of AI in the drug discovery market in the region. Europe is the second-largest market for AI in drug discovery after the Americas.
A rise in R&D activities in the healthcare sector and a surge in demand for AI solutions by leading pharmaceutical companies are some of the factors anticipated to boost the growth of the regional market. The growth of the Asia-Pacific market can be attributed to the increasing demand for effective drug discovery solutions.
Major countries such as the United States and Canada have been at the forefront of the healthcare industry. One of the main reasons for the region's rapid growth in AI in the drug discovery market is the growing number of large AI platform developers. After the Americas, Europe is the second-largest market for AI in drug discovery. Growing R&D activities in the pharmaceutical industry, as well as growing demand for AI-based solutions from pharmaceutical firms, are projected to propel the regional market forward.
Players such as IBM Watson, Berg Health, GNS Healthcare, Atomwise Exscientia, Cyclica, Insitro, Alphabet, Benevolent AI, and BioSymetrics are holding a dominant position in the AI in drug discovery market. AI-based services, websites, and tools for the identification of novel drug candidates are offered by players.
Stakeholders in the pharmaceutical industry are currently exploring the introduction of Artificial Intelligence (AI) based tools to better educate drug development operations using available chemical and biological data in order to resolve issues associated with raising capital requirements in drug discovery and avoid late-stage failure of drug development programs.
Deep-dive Insights on Artificial Intelligence in Drug Discovery Market by Polaris Market Research: https://www.polarismarketresearch.com/industry-analysis/ai-in-drug-discovery-market/request-for-sample