Interest in artificial intelligence (AI) has grown over the years. Tools and platforms like ChatGPT have made AI programs increasingly accessible. AI has touched almost every field as the world increasingly explores its capabilities. Radiology is no different.
Curious to know how AI is helping advance radiology? Our blog post on the AI in radiology market has it all. From AI use cases in radiology to the market outlook, the blog post covers all you need to know about this evolving field. Let’s begin!
AI in radiology has witnessed significant change. In the past, it was limited to a few experimental tools trying to explore new possibilities. AI in radiology now includes several advanced algorithms and intelligent systems. Computer algorithms, machine learning, and neural networks are now used to allow healthcare professionals to read and analyze medical images accurately and efficiently. The technology is still evolving, but it’s changing how radiology services are delivered.
Our assessment reveals the AI in radiology market to witness significant growth in the years to come. The market for AI in radiology stood at USD 1.55 billion in 2024. It is projected to account for a CAGR of 38.31% between 2025 and 2034.
The prevalence of chronic conditions such as cancer and diabetes is on the rise across the globe. This has resulted in increased demand for advanced diagnostic imaging solutions. The growing geriatric population has increased the imaging volumes for age-related conditions, impacting the AI in radiology market favorably.
Smarter Image Reading and Diagnosis
The recognition of patterns in medical imaging can be too nuanced for the human eye. And AI in radiology recognizes these patterns. A good example of this is breast screening. AI identifies little discrepancies in mammograms that suggest a tumor is in the early stages of development. It also highlights fractures and nodules on CT scans. These tools allow initiating a response to patient care and potentially improve clinical outcomes. AI approaches, such as computer-aided detection or computer-aided diagnosis, are not meant to replace clinical staff. They serve as intelligent assistants that direct attention to areas that warrant closer review. AI can reduce errors and enhance the reliability of results.
Automating Everyday Tasks
Radiologists handle dozens or even hundreds of scans daily. As a result, the task can take a long time. AI can handle repetitive tasks such as the organization and labeling of images. The technology can also generate initial reports. Prioritization of urgent cases in emergencies can be done by AI. This ensures that patients who are in critical condition receive immediate attention without delay.
Transforming Visual Content into Data
Artificial intelligence can extend beyond the visible content of the image. AI can carry out the quantitative imaging process, which is the scanning of millions of pixels to extract granular information. It can assess the size and texture of the tumor, for example, and it can also contribute to the understanding of response to treatment. In cancer care, quantitative imaging provides physicians with the ability to monitor whether a tumor shrinks or to understand the change over time. By converting visual information into metrics, AI elevates diagnoses with high precision and reliability.
Simplifying Reports and Supporting Decisions
The creation of detailed reports takes time. But AI helps make it easier. Using natural language processing, AI can automatically convert the results of scans into detailed reports. AI can also make comparisons between large medical databases and scan findings to suggest possible diagnoses and treatment. That way, doctors can be more confident in their decisions.
Offer a More Differentiated Analysis
Several AI in healthcare market solutions are focused on providing additional information. This can take the form of quantifying information in an image that’s currently reported only qualitatively. The solution can add normative values to allow doctors to compare the findings with the overall average.
Provides a Second Opinion
Having an AI solution functioning in the background provides an easy way to get a second opinion. The results of the AI solution can act as a backup check on the doctor’s diagnosis. Another benefit of AI software is that it makes radiologists familiar with it. It also builds trust as radiologists notice that AI adds value.
Eliminate Inter- And Intra-Observer Variability
The diagnosis of even the best-trained radiologists can differ sometimes. In addition, different radiologist may emphasize different things in their reports. This may present a challenge to referring doctors, as they need to consider these variations during information synthesis. Software solutions from the medical image analysis software market are capable of reducing or eliminating the variability between the reports of different radiologists.
Cost and Time Savings
AI in radiology improves efficiency and accuracy. This helps save time and money. With early disease detection, timely treatment can be initiaited. The automation of workflow and accelerated image analysis reduces the workload for radiologists. This allows for quick diagnosis and also reduces the hospital stay time.
AI in radiology solutions have gained accrediations and approvals from the healthcare organizations worldwide. The technology adds immense value in radiology. It enables clinical decision making and provides support to radiologists in their busy and demanding environments. The AI in radiology market is expected to witness the development of more advanced algorithms that reduce reporting time and improve diagnostic accuracy.