The artificial intelligence in manufacturing market size is expected to reach USD 273.16 billion by 2034, according to a new study by Polaris Market Research. The report “Artificial Intelligence in Manufacturing Market Size, Share, Trends, Industry Analysis Report: By Component (Hardware, Software), By Technology, By Application, By End Use, By Region– Market Forecast, 2025–2034” gives a detailed insight into current market dynamics and provides analysis on future market growth.
AI in manufacturing refers to the use of artificial intelligence technologies such as machine learning, computer vision, and robotics to optimize production processes, improve quality control, and reduce downtime. It enables predictive maintenance, real-time monitoring, and automated decision-making across supply chains and factory operations.
Increasing regulatory scrutiny and demand for consistent product quality across global markets have made quality assurance a top priority for manufacturers. AI-powered quality control systems, particularly those based on computer vision and anomaly detection, are being deployed to meet stringent industry standards. In sectors such as pharmaceuticals, food processing, and electronics, real-time AI inspection tools help ensure compliance with safety and performance regulations. The drive to minimize product recalls, legal liabilities, and reputational risks is accelerating the integration of AI into quality management systems, aligning technological adoption with regulatory and compliance imperatives, thereby driving the growth.
Have Questions? Request a sample or make an Inquiry before buying this report by clicking the link below: https://www.polarismarketresearch.com/industry-analysis/artificial-intelligence-in-manufacturing-market/request-for-sample
The shift from reactive to predictive maintenance is driving AI implementation. Traditional maintenance models are being replaced by predictive analytics, which leverage historical and real-time machine data to forecast equipment failures. This transition is critical for industries where downtime directly impacts profitability, such as aerospace, automotive, and heavy machinery. AI enables manufacturers to adopt condition-based maintenance strategies, improving asset utilization and extending equipment life. The growing availability of machine sensor data and advances in AI algorithms are reinforcing predictive maintenance as a core pillar of smart manufacturing strategies, thereby fueling growth of the market.
By Component (Revenue - USD Billion, 2020–2034)
By Technology (Revenue - USD Billion, 2020–2034)
By Application (Revenue - USD Billion, 2020–2034)
By End Use (Revenue - USD Billion, 2020–2034)
By Regional Outlook (Revenue - USD Billion, 2020–2034)